Poly(3,4-ethylenedioxythiophene) as a Micro-Neural Interface Material for Electrostimulation

نویسندگان

  • Seth J. Wilks
  • Sarah M. Richardson-Burns
  • Jeffrey L. Hendricks
  • David C. Martin
  • Kevin J. Otto
چکیده

Chronic microstimulation-based devices are being investigated to treat conditions such as blindness, deafness, pain, paralysis, and epilepsy. Small-area electrodes are desired to achieve high selectivity. However, a major trade-off with electrode miniaturization is an increase in impedance and charge density requirements. Thus, the development of novel materials with lower interfacial impedance and enhanced charge storage capacity is essential for the development of micro-neural interface-based neuroprostheses. In this report, we study the use of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a neural interface material for microstimulation of small-area iridium electrodes on silicon-substrate arrays. Characterized by electrochemical impedance spectroscopy, electrodeposition of PEDOT results in lower interfacial impedance at physiologically relevant frequencies, with the 1 kHz impedance magnitude being 23.3 +/- 0.7 kOmega, compared to 113.6 +/- 3.5 kOmega for iridium oxide (IrOx) on 177 mum(2) sites. Further, PEDOT exhibits enhanced charge storage capacity at 75.6 +/- 5.4 mC/cm(2) compared to 28.8 +/- 0.3 mC/cm(2) for IrOx, characterized by cyclic voltammetry (50 mV/s). These improvements at the electrode interface were corroborated by observation of the voltage excursions that result from constant current pulsing. The PEDOT coatings provide both a lower amplitude voltage and a more ohmic representation of the applied current compared to IrOx. During repetitive pulsing, PEDOT-coated electrodes show stable performance and little change in electrical properties, even at relatively high current densities which cause IrOx instability. These findings support the potential of PEDOT coatings as a micro-neural interface material for electrostimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring

Recording neural activity during neurosurgical interventions is an invaluable tool for both improving patient outcomes and advancing our understanding of neural mechanisms and organization. However, increasing clinical electrodes’ signal-to-noise and spatial specificity requires overcoming substantial physical barriers due to the compromised metal electrochemical interface properties. The elect...

متن کامل

Oxidative atomized spray deposition of electrically conductive poly(3,4-ethylenedioxythiophene).

Atomized spray deposition of 3,4-ethylenedioxythiophene monomer in the presence of triflic anhydride vapour yields electrically conducting poly(3,4-ethylenedioxythiophene) layers.

متن کامل

PEDOT–CNT Composite Microelectrodes for Recording and Electrostimulation Applications: Fabrication, Morphology, and Electrical Properties

Composites of carbon nanotubes and poly(3,4-ethylenedioxythiophene, PEDOT) and layers of PEDOT are deposited onto microelectrodes by electropolymerization of ethylenedioxythiophene in the presence of a suspension of carbon nanotubes and polystyrene sulfonate. Analysis by FIB and SEM demonstrates that CNT-PEDOT composites exhibit a porous morphology whereas PEDOT layers are more compact. Accordi...

متن کامل

Investigations in the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) in an FET config

The π-conjugated backbone conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is chemically doped to the conducting regime (σ ~ 30 S/cm) with poly(4-styrenesulfonate) (PSS). Construction of an all polymer FET is described and the time dynamics of a simple polymer channel device using aluminum as the gating material is discussed. On/off ratios approaching 10 are achieved but with relativ...

متن کامل

Highly Stable PEDOT:PSS Coating on Gold Microelectrodes with Improved Charge Injection Capacity for Chronic Neural Stimulation

This study introduces two new processes that highly enable PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) as stable coating material for chronic neural stimulation. In first process, strong mechanical bonding between PEDOT:PSS coating and gold electrodes is achieved by creating rough porous surface with partial iodine etching. PEDOT:PSS coating on iodine etched gold electro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in Neuroengineering

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009